Chemistry

In recent advancements within the fields of bio- and electrochemistry, a significant breakthrough has emerged regarding the behavior of ions in various environments. Researchers at the Interface Science Department of the Fritz-Haber Institute have shed light on the vital role that solvation shells and kinetic parameters play in the processes fundamental to battery operation and
0 Comments
Lasso peptides, intriguing molecules synthesized by bacteria, have garnered significant attention from researchers due to their unique structural properties and potential therapeutic applications. Characterized by their distinct ‘slip knot’ shape, these peptides exhibit remarkable stability, rendering them resilient against harsh environmental conditions. With over 30 years of research, the scientific community is beginning to unlock
0 Comments
Recent advancements in the field of material science have led to a groundbreaking study that presents a remarkable application of porous liquids (PLs) for liquid-liquid separation. Conducted by researchers at the University of Birmingham and Queen’s University Belfast, this study is crucial for enhancing both environmental safety and public health. The research’s findings, published in
0 Comments
Perovskites have emerged as pivotal components in the realm of electronic materials, thanks largely to their unique structural and electrical properties. A recent study from Nagoya University has delved deeper into the intriguing behavior of these materials, particularly focusing on the layered variants of perovskite, specifically the 4- and 5-layered forms. This groundbreaking research sheds
0 Comments
For half a century, the intricacies of a specific electrochemical reaction involving graphite have baffled scientists. However, recent research conducted by a team at Umeå University has brought clarity to this complex phenomenon, outlining how graphite undergoes transformation into graphite oxide during the electrochemical oxidation process. This breakthrough represents not only a technical advancement in
0 Comments
In the intricate world of molecular biology, helical structures underpin the functionality of many critical biomolecules, particularly proteins. These helices emerge from the precisely ordered arrangement of their constituent amino acids—fundamental units that define the protein’s characteristics and capabilities. A deeper grasp of helix formation not only illuminates their structural importance but also paves the
0 Comments
Innovations in scientific research often unveil pathways for addressing some of the most pressing challenges of our time. A recent study showcases the potential of advanced spectroscopic techniques combined with rigorous theoretical analysis to unravel the complexities of converting carbon dioxide (CO2) into valuable chemical compounds, notably ethylene and ethanol. Published in the prestigious journal
0 Comments
Research conducted by scientists from the Leibniz Institute of Photonic Technology and the Universities of Jena and Ulm shed light on how small alterations in the chemical structure of iron compounds can impact their light-absorbing capabilities. Specifically, the study focused on the second coordination sphere of the iron molecules, which plays a significant role in
0 Comments
MXenes are a class of materials that have recently gained attention for their potential in various applications. A team of researchers, led by HZB chemist Michelle Browne, has discovered that properly functionalized MXenes can serve as excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. This breakthrough could pave the way for more
0 Comments
The debate surrounding the correlation between serotonin and depression has been ongoing for years. Recently, a team of researchers from China has made significant progress in this area by developing a highly sensitive and selective fluorescent probe for imaging processes related to serotonin. This breakthrough, discussed in their paper published in Angewandte Chemie International Edition,
0 Comments
In the realm of material science, the innovation of the “Up-Down Approach” is shaking up the way metal-organic frameworks (MOFs) are designed. For years, researchers have relied on either a bottom-up or top-down approach when creating MOFs. The bottom-up method involves selecting the metal clusters and ligands first, while the top-down method starts with a
0 Comments